Researchers investigate unifying principles of vertebrate adaptive immunity

Adaptive immunity is a powerful defense mechanism in vertebrates. A finely tuned interplay of different cell types provides a pathogen-specific immune response to eliminate for example bacteria and viruses. Max Planck researchers now identify the mechanistic basis of antigen receptor gene assembly that more than 500 million years ago independently evolved in one of the two sister branches of vertebrates. The results by the scientists from the Max Planck Institute of Immunobiology and Epigenetics in Freiburg are an important step to answering the question which of the many functions that are carried out by the immune system of living vertebrates are absolutely essential. The findings may help to understand the causes and consequences of failing immune functions and autoimmune syndromes.
Read More

Alzheimer’s and an unusual molecular chaperone

Among the hallmarks of Alzheimer’s disease are the Alzheimer fibrils, deposits of the tau protein, which accumulate in nerve cells in the form of fibres and disrupt communication between nerve cells. But how does this fibre formation take place? Why do such harmful deposits develop from the originally useful tau protein, which normally stabilizes cells? This question was addressed by a team of researchers from the University of Konstanz and Utrecht University (Netherlands), led by Konstanz chemist Professor Malte Drescher. Using structural analyses, the researchers brought to light a surprising biochemical mechanism in which a molecular chaperone—a helper protein—plays an unusual role. The research results are going to be published on 13 March 2020 in the journal Science Advances and are available as a preprint version at Biorxiv.
Read More

Coronavirus spreads quickly and sometimes before people have symptoms, study finds

Infectious disease researchers at The University of Texas at Austin studying the novel coronavirus were able to identify how quickly the virus can spread, a factor that may help public health officials in their efforts at containment. They found that time between cases in a chain of transmission is less than a week and that more than 10% of patients are infected by somebody who has the virus but does not yet have symptoms.
Read More